时间膨胀
为了试图证明这个时间膨胀理论,两个非常精确的原子钟同步,一个在飞机上拍摄于高速旅行。当飞机回来时,时钟,坐飞机挺慢的爱因斯坦方程预测量。因此,一个移动的时钟运行更慢的参照系是不运动。请记住,当返回的时钟,它比地面时钟记录的时间更少。一旦团结与地面时钟,时钟将再次缓慢记录时间以同样的速度为地面时钟(显然,它仍将落后的时间在旅途中除非re-synchronized)放缓。只有当运动的时钟是关于另一个时钟,时间膨胀。看一看下面的图4和图5。
假设图4中的物体在阳光下是一个车轮上的光时钟。光钟措施时间发送一束光从底部板,顶板然后反射回板底部。光时钟似乎是最好的衡量时间以来速度保持不变的运动无关。在图4中,我们走到光时钟和发现它需要1秒的光从底部到顶部和底部回了。现在看看图5所示。在这个例子中,光钟向右滚动,但我们是静止的。如果我们可以看到光束时钟滚过去的我们,我们会看到光束角的盘子。如果你困惑,看看图4,你会发现发送梁和接收波束发生在阳光下,因此,钟不动。现在看看图5,送梁发生在太阳下,但反射的光束返回当钟在闪电下,因此时钟是向右滚动。这个告诉我们的是什么? We know that the clock standing still sends and receives at 1-second intervals. We also know that the speed of light is constant. Regardless of where we are, we would measure the light beam in fig 4 and fig 5 to be the exact same speed. But Fig 5 looks like the light traveled farther because the arrows are longer. And guess what, it did. It took the light longer to make one complete send and receive cycle, but the speed of the light was unchanged. Because the light traveled farther and the speed was unchanged, this could only mean that the time it took was longer. Remember speed is distance / time, so the only way for the speed to be unchanged when the distance increases is for the time to also increase.
广告
在下一节中,我们来看看时间间隔。